p=2a(2+cosθ)(a>0)定积分求极点平面图形面积
展开全部
图形关于θ=0对称,所以积分区间[0,π]
S = 2*1/2*∫(0,π) ρ²dθ
=∫(0,π) [2a(2+cosθ)²dθ
=4a²∫(0,π) (4+4cosθ+cos²θ)dθ
=4a²∫(0,π) (9/2+4cosθ+1/2*cos2θ)dθ
=4a²[(9θ/2+4sinθ+1/4*sin2θ](0,π)
=18πa²
扩展资料
定积分的性质:
1、当a=b时,
2、当a>b时,
3、常数可以提到积分号前。
4、代数和的积分等于积分的代数和。
5、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有
又由于性质2,若f(x)在区间D上可积,区间D中任意c(可以不在区间[a,b]上)满足条件。
6、如果在区间[a,b]上,f(x)≥0,则
7、积分中值定理:设f(x)在[a,b]上连续,则至少存在一点ε在(a,b)内使
参考资料来源:百度百科--定积分
展开全部
图形关于θ=0对称,所以积分区间[0,π]
S = 2*1/2*∫(0,π) ρ²dθ
=∫(0,π) [2a(2+cosθ)²dθ
=4a²∫(0,π) (4+4cosθ+cos²θ)dθ
=4a²∫(0,π) (9/2+4cosθ+1/2*cos2θ)dθ
=4a²[(9θ/2+4sinθ+1/4*sin2θ](0,π)
=18πa²
S = 2*1/2*∫(0,π) ρ²dθ
=∫(0,π) [2a(2+cosθ)²dθ
=4a²∫(0,π) (4+4cosθ+cos²θ)dθ
=4a²∫(0,π) (9/2+4cosθ+1/2*cos2θ)dθ
=4a²[(9θ/2+4sinθ+1/4*sin2θ](0,π)
=18πa²
追问
为什么不是【0,2π】
追答
因为是对称图形,所以取一半乘以二即可
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图形关于θ=0对称,所以积分区间[0,π]
S = 2*1/2*∫(0,π) ρ²dθ
=∫(0,π) [2a(2+cosθ)²dθ
=4a²∫(0,π) (4+4cosθ+cos²θ)dθ
=4a²∫(0,π) (9/2+4cosθ+1/2*cos2θ)dθ
=4a²[(9θ/2+4sinθ+1/4*sin2θ](0,π)
=18πa²
S = 2*1/2*∫(0,π) ρ²dθ
=∫(0,π) [2a(2+cosθ)²dθ
=4a²∫(0,π) (4+4cosθ+cos²θ)dθ
=4a²∫(0,π) (9/2+4cosθ+1/2*cos2θ)dθ
=4a²[(9θ/2+4sinθ+1/4*sin2θ](0,π)
=18πa²
追问
为什么不是【0,2π】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
引用7zone射手的回答:
图形关于θ=0对称,所以积分区间[0,π]
S = 2*1/2*∫(0,π) ρ²dθ
=∫(0,π) [2a(2+cosθ)²dθ
=4a²∫(0,π) (4+4cosθ+cos²θ)dθ
=4a²∫(0,π) (9/2+4cosθ+1/2*cos2θ)dθ
=4a²[(9θ/2+4sinθ+1/4*sin2θ](0,π)
=18πa²
图形关于θ=0对称,所以积分区间[0,π]
S = 2*1/2*∫(0,π) ρ²dθ
=∫(0,π) [2a(2+cosθ)²dθ
=4a²∫(0,π) (4+4cosθ+cos²θ)dθ
=4a²∫(0,π) (9/2+4cosθ+1/2*cos2θ)dθ
=4a²[(9θ/2+4sinθ+1/4*sin2θ](0,π)
=18πa²
展开全部
为什么是对称图形,这个才是关键
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询