在三角形ABC中,点O是AC上一个动点,过点O 作直线MN平行于BC,设MN交角BCA的平分线于
在三角形ABC中,点O是AC上一个动点,过点O作直线MN平行于BC,设MN交角BCA的平分线于点E...
在三角形ABC中,点O是AC上一个动点,过点O 作直线MN平行于BC,设MN交角BCA的平分线于 点E
展开
2014-03-31 · 知道合伙人人文行家
关注
展开全部
1 证明:∵MN//BC
∴∠OEC=∠BCE
∴∠OFC=∠FCG
∵∠BCE=∠OCE(OE是∠BCA的内角平分线)
∴∠OEC=∠OCE
∴OE=OC
∵∠OCF=∠FCG(OF是∠BCA的外角平分线)
∴∠OCF=∠OFC
∴OF=OC
∴OE=OF
2 当O在AC上运动时,BCFE不是菱形.
3 当 △ABC是等腰直角三角形时,并且O运动到AC边中点时,四边形AECF是正方形.
证明:∵∠C=90°CE是角分线
∴∠ACE=45°
:∵OE//BC
∴∠FEC=45°
∴OE=OC
∵OC=OA(已知)
∴OC=OA=OE=OF
∵AC⊥EF
∴AECF是正方形.
如果对你有帮助 记得给我好评哈,么么哒
如果有新问题 记得要在新页面提问 祝你学习进步!
∴∠OEC=∠BCE
∴∠OFC=∠FCG
∵∠BCE=∠OCE(OE是∠BCA的内角平分线)
∴∠OEC=∠OCE
∴OE=OC
∵∠OCF=∠FCG(OF是∠BCA的外角平分线)
∴∠OCF=∠OFC
∴OF=OC
∴OE=OF
2 当O在AC上运动时,BCFE不是菱形.
3 当 △ABC是等腰直角三角形时,并且O运动到AC边中点时,四边形AECF是正方形.
证明:∵∠C=90°CE是角分线
∴∠ACE=45°
:∵OE//BC
∴∠FEC=45°
∴OE=OC
∵OC=OA(已知)
∴OC=OA=OE=OF
∵AC⊥EF
∴AECF是正方形.
如果对你有帮助 记得给我好评哈,么么哒
如果有新问题 记得要在新页面提问 祝你学习进步!
追问
可以画出第3题的题吗
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询