有理函数的不定积分
展开全部
x-3=(x-1)+(x-1)-(x+1)
所以
(x-3)/(x-1)(x²-1)
=[(x-1)+(x-1)-(x+1)]/[(x-1)²(x+1)]
=2/(x-1)(x+1) -1/(x-1)²
=2/(x²-1) -1/(x-1)²
所以
原式=∫2/(x²-1)dx -∫1/(x-1)²dx
=∫[1/(x-1)-1/(x+1)]dx+1/(x-1)
=ln|x-1|-ln|x+1|++1/(x-1)+c
=ln|(x-1)/(x+1)|+1/(x-1)+c
所以
(x-3)/(x-1)(x²-1)
=[(x-1)+(x-1)-(x+1)]/[(x-1)²(x+1)]
=2/(x-1)(x+1) -1/(x-1)²
=2/(x²-1) -1/(x-1)²
所以
原式=∫2/(x²-1)dx -∫1/(x-1)²dx
=∫[1/(x-1)-1/(x+1)]dx+1/(x-1)
=ln|x-1|-ln|x+1|++1/(x-1)+c
=ln|(x-1)/(x+1)|+1/(x-1)+c
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |