设A为n阶实矩阵,满足AA^T=I(单位阵),A的行列式小于零,试求A的伴随矩阵A*的一个特征值

。。。答案上说要证【I+A】=0证不出来... 。。。答案上说要证【I+A】=0 证不出来 展开
_inner_
2008-08-09
知道答主
回答量:2
采纳率:0%
帮助的人:0
展开全部
首先,A是正交阵。因此行列式为+1或-1,由题目要求,有|A|=-1
其次,A伴随/|A| = A的逆 = A^T
故A伴随 = -A^T
因此A的特征值的相反数就是A伴随的特征值

根据你的修改,我做出一些修改
这个题出的很妙,又考了伴随矩阵又考了特征值
由于|A+I|*|A^T| = |(A+I)*A^T| = |A^T+I| = |A+I|
又|A| = |A^T| = -1
因此,-|A+I| = |A+I|
也就是说|A+I| = 0
因此“1”一定是A的特征值
故“-1”一定是A伴随的特征值

我第一遍的回答吧这题想的太简单了
没有注意到正交阵特征值的特殊性质,请见谅
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式