在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于A、B两点,且OA?OB=?4.(1)求直线l恒过一定点的坐标
在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于A、B两点,且OA?OB=?4.(1)求直线l恒过一定点的坐标;(2)求线段AB的中点M的轨迹方程....
在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于A、B两点,且OA?OB=?4.(1)求直线l恒过一定点的坐标;(2)求线段AB的中点M的轨迹方程.
展开
1个回答
展开全部
(1)设l:x=ty+b代入抛物线y2=4x,消去x得y2-4ty-4b=0设A(x1,y1),B(x2,y2)
则y1+y2=4t,y1y2=-4b,∴
?
=x1x2+y1y2=(ty1+b)(ty2+b)+y1y2=b2-4b
令b2-4b=-4,∴b2-4b+4=0,∴b=2.
∴直线l过定点(2,0).
(2)设线段AB的中点M(x,y),
∵A(x1,y1),B(x2,y2)在曲线y2=4x上
∴y12=4x1,y22=4x2
两式作差得(y2-y1)(y2+y1)=4(x2-x1)
即
=
=k
则
…(12分)
∴线段AB的中点M的轨迹方程 y2=2(x-2)…(14分)
则y1+y2=4t,y1y2=-4b,∴
OA |
OB |
令b2-4b=-4,∴b2-4b+4=0,∴b=2.
∴直线l过定点(2,0).
(2)设线段AB的中点M(x,y),
∵A(x1,y1),B(x2,y2)在曲线y2=4x上
∴y12=4x1,y22=4x2
两式作差得(y2-y1)(y2+y1)=4(x2-x1)
即
y2?y1 |
x2?x1 |
4 |
y1+y2 |
则
|
∴线段AB的中点M的轨迹方程 y2=2(x-2)…(14分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询