下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图

下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说... 下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于1998吗?2005,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由. 展开
 我来答
崾惍吨妜刖
2014-09-01 · TA获得超过167个赞
知道答主
回答量:133
采纳率:0%
帮助的人:132万
展开全部
(1)平行四边形框内的九个数之和是中间的数的9倍;

(2)任意作一类似(1)中的平行四边形框,规律仍然成立.
不仿设框中间的数为n,这九个数按大小顺序依次为:
(n-18),(n-16),(n-14),(n-2),n,(n+2),(n+14),(n+16),(n+18).
显然,其和为9n;

(3)这九个数之和不能为1998:
若和为1998,则9n=1998,n=222,是偶数,
显然不在数阵中.
这九个数之和也不能为2005:
因为2005不能被9整除;
若和为1017,则中间数可能为113,最小的数为113-16-2=95.
不交电费乱发啥光
2017-01-24 · TA获得超过102个赞
知道答主
回答量:37
采纳率:0%
帮助的人:3.5万
展开全部
分析(1)应算出平行四边形框内的九个数之和,进而判断与中间的数的关系;
(2)任意作一类似(1)中的平行四边形框,仿照(1)的算法,进行简单判断;然后设最框中间的数为未知数,左右相邻的两个数相差2,上下相邻的两个数相差18,得到这9个数的和.
(3)看所给的数能否被9整除,不能被9整除的,排除;能被9整除的,结果为偶数的,排除.最小的数为中间的数-16-2.
解答:解:(1)平行四边形框内的九个数之和是中间的数的9倍;
(2)任意作一类似(1)中的平行四边形框,规律仍然成立.
不仿设框中间的数为n,这九个数按大小顺序依次为:
(n-18),(n-16),(n-14),(n-2),n,(n+2),(n+14),(n+16),(n+18).
显然,其和为9n;
(3)这九个数之和不能为1998:
若和为1998,则9n=1998,n=222,是偶数,
显然不在数阵中.
这九个数之和也不能为2005:
因为2005不能被9整除;
若和为1017,则中间数可能为113,最小的数为113-16-2=95.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式