已知x,y,z都是实数,且x 2 +y 2 +z 2 =1,则xy+yz+xz的最大值为______.
展开全部
把原式两边同时乘以2得:
2(x 2 +y 2 +z 2 )=2,即(x 2 +y 2 )+(x 2 +z 2 )+(y 2 +z 2 )=2,
∵x 2 +y 2 ≥2xy,x 2 +z 2 ≥2xz,y 2 +z 2 ≥2yz,
∴2=(x 2 +y 2 )+(x 2 +z 2 )+(y 2 +z 2 )≥2xy+2xz+2yz,
即xy+xz+yz≤1,当且仅当x=y=z时取等号,
则xy+xz+yz的最大值为1.
2(x 2 +y 2 +z 2 )=2,即(x 2 +y 2 )+(x 2 +z 2 )+(y 2 +z 2 )=2,
∵x 2 +y 2 ≥2xy,x 2 +z 2 ≥2xz,y 2 +z 2 ≥2yz,
∴2=(x 2 +y 2 )+(x 2 +z 2 )+(y 2 +z 2 )≥2xy+2xz+2yz,
即xy+xz+yz≤1,当且仅当x=y=z时取等号,
则xy+xz+yz的最大值为1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询