求由下列曲线所围成图形的面积:y^2=2x+1,x-y-1=0,
展开全部
先解出2个交点坐标(所围图形面积和交点密切相关,所以先求):
y^2 = 2x + 1 (1)
x - y - 1 = 0,
消去y得到:(x-1)^2 = 2x + 1,推出x = 0或4,这样,交点坐标为A(0,-1),B(4, 3).
然后画图.求图形的面积就是求定积分.注意到如果对x积分那么被积函数的形式会很复杂,因为从(1)式里解y出来会有正负两个根;如果对y积分就避免了这个问题.对y积分的积分上下限就是交点A的纵坐标到交点B的纵坐标,即-1到3,于是
面积S = 定积分(-1到3) { y+1 - (y^2 - 1)/2 } (对y积分要全部表示为y,并且此时直线正好全部位于抛物线上方(旋转90度看图))
= 定积分(-1到3){ y - 1/2 y^2 + 3/2 }
= 1/2 y^2 - 1/6 y^3 + 3y/2 | -1到3
= 16/3.
答案:面积为16/3
y^2 = 2x + 1 (1)
x - y - 1 = 0,
消去y得到:(x-1)^2 = 2x + 1,推出x = 0或4,这样,交点坐标为A(0,-1),B(4, 3).
然后画图.求图形的面积就是求定积分.注意到如果对x积分那么被积函数的形式会很复杂,因为从(1)式里解y出来会有正负两个根;如果对y积分就避免了这个问题.对y积分的积分上下限就是交点A的纵坐标到交点B的纵坐标,即-1到3,于是
面积S = 定积分(-1到3) { y+1 - (y^2 - 1)/2 } (对y积分要全部表示为y,并且此时直线正好全部位于抛物线上方(旋转90度看图))
= 定积分(-1到3){ y - 1/2 y^2 + 3/2 }
= 1/2 y^2 - 1/6 y^3 + 3y/2 | -1到3
= 16/3.
答案:面积为16/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询