如何计算∫1/(1- x^2) dx

 我来答
教育小百科达人
2023-04-01 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:468万
展开全部

求不定积分的具体回答如下:

∫1/(1-x^2)dx

=1/2∫[1/(1-x)+1/(1+x)]dx

=1/2[-ln(1-x)+ln(1+x)]+C

=1/2ln[(1+x)/(1-x)]+C

扩展资料:

在求函数f(x)不定积分的时候,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C,因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式