已知数列{a n }中a 1 =1, a n+1 = a n 2 a n +1 (n∈N + ).(1)求证:数列 {
已知数列{an}中a1=1,an+1=an2an+1(n∈N+).(1)求证:数列{1an}为等差数列;(2)设bn=an?an+1(n∈N+),数列{bn}的前n项和为...
已知数列{a n }中a 1 =1, a n+1 = a n 2 a n +1 (n∈N + ). (1)求证:数列 { 1 a n } 为等差数列; (2)设b n =a n ?a n+1 (n∈N + ),数列{b n }的前n项和为S n ,求满足 S n > 1005 2012 的最小正整数n.
展开
展开全部
(1)证明:由a
1
=1与
a
n+1
=
a
n
2
a
n
+1
得a
n
≠0,
1
a
n+1
=
2
a
n
+1
a
n
=2+
1
a
n
,
所以对?n∈N
+
,
1
a
n+1
-
1
a
n
=2
为常数,
故
{
1
a
n
}
为等差数列;
(2)由(1)得
1
a
n
=
1
a
1
+2(n-1)=2n-1
,
b
n
=
a
n
?
a
n+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,
所以
S
n
=
b
1
+
b
2
+…+
b
n
=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+…+
1
2
(
1
2n-1
-
1
2n+1
)
=
1
2
(1-
1
2n+1
)
=
n
2n+1
,
由
S
n
>
1005
2012
即
n
2n+1
>
1005
2012
,得
n>
1005
2
=502
1
2
,
所以满足
S
n
>
1005
2012
的最小正整数n=503.
1
=1与
a
n+1
=
a
n
2
a
n
+1
得a
n
≠0,
1
a
n+1
=
2
a
n
+1
a
n
=2+
1
a
n
,
所以对?n∈N
+
,
1
a
n+1
-
1
a
n
=2
为常数,
故
{
1
a
n
}
为等差数列;
(2)由(1)得
1
a
n
=
1
a
1
+2(n-1)=2n-1
,
b
n
=
a
n
?
a
n+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,
所以
S
n
=
b
1
+
b
2
+…+
b
n
=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+…+
1
2
(
1
2n-1
-
1
2n+1
)
=
1
2
(1-
1
2n+1
)
=
n
2n+1
,
由
S
n
>
1005
2012
即
n
2n+1
>
1005
2012
,得
n>
1005
2
=502
1
2
,
所以满足
S
n
>
1005
2012
的最小正整数n=503.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询