对任意正数X1,X2,.Xn,证明:f[ln(X1+X2+,.+Xn)]>f(lnX1)+f(lnX2)+.+f(lnXn)

 我来答
会哭的礼物17
2022-06-05 · TA获得超过1.2万个赞
知道大有可为答主
回答量:5763
采纳率:100%
帮助的人:30.1万
展开全部
假设f(x)为增.f(0)=0.f(ln(x1+x2+...+xn))=g(x)>h(x)=f(lnx1)+...+f(lnxn),{xn}为递增的.如果{xn}中有在(0,1)的项t,则lnt1,假设g(x)中有t个项属于(0,1)则g(x)>0的概率为(n-t)/n,而对于f(x)来说,那怕t接近n,只要有一...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式