证明当x→0时无穷小量ln√(1+x/1-x)与x是等价无穷小

 我来答
华源网络
2022-05-26 · TA获得超过5594个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:147万
展开全部
lim(x→0) [ln√(1+x/1-x)] / x
=lim(x→0) (1/2x)*ln[(1+x)/(1-x)]
=1/2 lim(x→0) [ln(1+x)-ln(1-x)] / x
(因为x→0时,ln(1+x)→0、ln(1-x)→0 、 x→0,上下同时求导)
=1/2 lim(x→0) [ln(1+x)]'/x' -1/2 lim(x→0) [ln(1-x)]'/x'
=1/2 lim(x→0) 1/(1+x) -1/2 lim(x→0) [-1/(1-x)]
=1/2 [1/(1+0)] + 1/2 [1/(1-0)]
=1/2 + 1/2
=1
所以,当x→0时无穷小量ln√(1+x/1-x)与x是等价无穷小
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式