当 x >0时,求证:e x > x +1.
1个回答
展开全部
分析:
本题考查利用导数证明不等式的问题.解题的关键是由导数确定单调区间,由函数在某一区间上的单调性构造不等式求解.证明不妨设f(x)=ex-x-1 则f′(x)=(ex)′-(x)′=ex-1.∵x>0 ∴ex>1 ex-1>0.∴f′(x)>0 即f(x)在(0,+∞)上是增函数.∴f(x)>f(0) 即ex-x-1>e0-1=0.∴ex>x+1.
点评:
利用导数可证明不等式:若函数y=f(x)在x∈(a b)上是单调增函数 任取a
本题考查利用导数证明不等式的问题.解题的关键是由导数确定单调区间,由函数在某一区间上的单调性构造不等式求解.证明不妨设f(x)=ex-x-1 则f′(x)=(ex)′-(x)′=ex-1.∵x>0 ∴ex>1 ex-1>0.∴f′(x)>0 即f(x)在(0,+∞)上是增函数.∴f(x)>f(0) 即ex-x-1>e0-1=0.∴ex>x+1.
点评:
利用导数可证明不等式:若函数y=f(x)在x∈(a b)上是单调增函数 任取a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询