当 x >0时,求证:e x > x +1.

 我来答
舒适还明净的海鸥i
2022-08-13 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:68.9万
展开全部
分析:
本题考查利用导数证明不等式的问题.解题的关键是由导数确定单调区间,由函数在某一区间上的单调性构造不等式求解.证明不妨设f(x)=ex-x-1 则f′(x)=(ex)′-(x)′=ex-1.∵x>0 ∴ex>1 ex-1>0.∴f′(x)>0 即f(x)在(0,+∞)上是增函数.∴f(x)>f(0) 即ex-x-1>e0-1=0.∴ex>x+1.
点评:
利用导数可证明不等式:若函数y=f(x)在x∈(a b)上是单调增函数 任取a
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式