零点定理是什么
展开全部
如果函数y= f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y= f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)= 0的根。
扩展资料:
“Darboux函数”是具有“介值属性”的实值函数f,即满足介值定理的结论:对于f的域中的任何两个值a和b,以及任何y在f(a)和f(b)中,a和b之间有一些c,f(c)= y。介值定理说每个连续函数都是一个Darboux函数。但是,并不是每个Darboux功能都是连续的;即介值定理的相反是错的。
例如,对于x> 0和f(0)= 0,取
定义的函数
在x = 0时连续,这个函数在x=0处不连续,但是该函数具有介值属性。
历史上,这个介值属性被建议为实数函数连续性的定义,但这个定义没有被采纳。
Darboux定理指出,由某些区间上某些其他函数的区分产生的所有函数都具有介值属性(尽管它们不需要连续)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询