已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立,若a=30.3?f
已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立,若a=30.3?f(30.3),b=(logπ3)?f(logπ3)...
已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立,若a=30.3?f(30.3),b=(logπ3)?f(logπ3),c=(log319)?f(log319).则a,b,c的大小关系是( )A.a>b>cB.c>a>bC.c>b>aD.a>c>b
展开
1个回答
展开全部
构造函数h(x)=xf(x),
由函数y=f(x)以及函数y=x是R上的奇函数可得h(x)=xf(x)是R上的偶函数,
又当x∈(-∞,0)时h′(x)=f(x)+xf′(x)<0,
所以函数h(x)在x∈(-∞,0)时的单调性为单调递减函数;
所以h(x)在x∈(0,+∞)时的单调性为单调递增函数.
又因为函数y=f(x)是定义在R上的奇函数,所以f(0)=0,从而h(0)=0
因为log3
=-2,所以f(log3
)=f(-2)=-f(2),
由0<logπ3<1<30.3<30.5<2
所以h(logπ3)<h(30.3)<h(2)=f(log3
),即:b<a<c
故选B.
由函数y=f(x)以及函数y=x是R上的奇函数可得h(x)=xf(x)是R上的偶函数,
又当x∈(-∞,0)时h′(x)=f(x)+xf′(x)<0,
所以函数h(x)在x∈(-∞,0)时的单调性为单调递减函数;
所以h(x)在x∈(0,+∞)时的单调性为单调递增函数.
又因为函数y=f(x)是定义在R上的奇函数,所以f(0)=0,从而h(0)=0
因为log3
1 |
9 |
1 |
9 |
由0<logπ3<1<30.3<30.5<2
所以h(logπ3)<h(30.3)<h(2)=f(log3
1 |
9 |
故选B.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询