幂级数∑(∞ n=1)(x^n)/n的和函数
1个回答
展开全部
先将级数 ∑(∞ n=1)(x^n)/n 逐项求导得 d(∑(∞ n=1)(x^n)/n)dx = ∑(∞ n=0)x^n ,当 |x|<1时该级数收敛,其和函数 S(x)= 1/(1-x),即 d(∑(∞ n=1)(x^n)/n)dx = S(x)= 1/(1-x),两端积分得 ∑(∞ n=1)(x^n)/n = -ln(1-x)+ C (C为常数),然后将 x=0代入式中得 C=0 ,因此得结论 ∑(∞ n=1)(x^n)/n = -ln(1-x).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询