正方形ABCD中E,F分别为BC CD上的中点AE,BF,交于G,连接DG,求证DG=AB

 我来答
晏衍谏晓枫
2019-10-21 · TA获得超过3714个赞
知道大有可为答主
回答量:3226
采纳率:27%
帮助的人:194万
展开全部
证明:
取AB的中点G,连接DG,交AE于H
∵四边形ABCD是正方形
∴AB=BC=CD,∠ABE=∠BCF=90º
∵E,F分别是BC,CD的中点
∴BE=CF
∴⊿ABE≌⊿BCF(SAS)
∴∠BAE=∠CBF
∵∠BAE+∠BEA=90º
∴∠APB=∠CBF+∠BEP=90º
∵BG=DF,BG//DF
∴四边形BFDG是平行四边形
∴BF//GD
∴∠AHG=∠APB=90º
∵AG=BG
∴AH=PH【平行线等分线段定理】
∴DG垂直平分AP
∴AD=PD【垂直平分线上的点到线段两端的距离相等】
望采纳!谢谢!求TK.SHG顽劣采纳并点赞!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式