判断函数f (x)=x/x^2-1在区间(-1,1)上的单调性,给出证明
2个回答
展开全部
解:函数f (x)=x/x^2-1在区间(-1,1)上单调递减。
证明:设-1<a<b<1
f(a)-f(b)=a/(a^2-1)-b/(b^2-1)
=(ab^2-a-ba^2+b)/(a^2-1)(b^2-1)
=(ab+1)(b-a)/(a^2-1)(b^2-1)
∵-1<x<1∴ ab+1>0 a^2-1<0 b-a<0
∴ (ab+1)(b-a)>0 (a^2-1)(b^2-1)
>0
∴f(a)>f(b) ∵a<b
∴ 函数f (x)=x/x^2-1在区间(-1,1)上单调递减。
证明:设-1<a<b<1
f(a)-f(b)=a/(a^2-1)-b/(b^2-1)
=(ab^2-a-ba^2+b)/(a^2-1)(b^2-1)
=(ab+1)(b-a)/(a^2-1)(b^2-1)
∵-1<x<1∴ ab+1>0 a^2-1<0 b-a<0
∴ (ab+1)(b-a)>0 (a^2-1)(b^2-1)
>0
∴f(a)>f(b) ∵a<b
∴ 函数f (x)=x/x^2-1在区间(-1,1)上单调递减。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询