概率论:关于全期望公式E(E[X|Y])=EX的证明有一步想不通

不理解图中打问号的那一步。这个好像是边缘密度函数的定义,但为啥就是这样定义的呢?... 不理解图中打问号的那一步。
这个好像是边缘密度函数的定义,但为啥就是这样定义的呢?
展开
 我来答
帐号已注销
2020-12-07 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

边缘概率密度公式 f(x)=联合密度函数对y的积分

因为E(Y)是个常数,它代表均值,对于给定的概率分布,其均值是固定的,可以看成常数a => E{aX}=aE(X)=E(X)E(Y) XY不独立也成立的。

连续型的期望就是一个积分,积分运算是线性的,也就是说两项和的积分等于两项分别积分后的和。∫(A+B) = ∫A + ∫B

扩展资料:

全期望公式是条件数学期望的一个非常重要的性质,其重要性堪比全概率公式在概率中的作用。

条件期望又称条件数学期望。为了方便起见,讨论两个随机变量X与Y的场合,假定它们具有密度函数f(x,y) ,并以g(y|x) 记已知X=x的条件下Y的条件密度函数,以h(x)记X的边缘密度函数。定义在X=x的条件下, Y的条件期望定义为:E(Y|X=x)=∫y*g(y|x)dy。

参考资料来源:百度百科-全期望公式

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
martinisgood
2016-12-09 · TA获得超过6597个赞
知道小有建树答主
回答量:860
采纳率:0%
帮助的人:490万
展开全部


一个公式

本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
你比从前更二
2018-12-04
知道答主
回答量:1
采纳率:0%
帮助的人:799
展开全部
边缘概率密度公式 f(x)=联合密度函数对y的积分
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式