
已知x>0,y>0,且1/x+1/y=1, 求x+y的最小值
2个回答
展开全部
1/x+1/y=1
两边同乘xy:x+y
=
xy
xy-x-y
=
0
xy-x-y+1
=
1
(x-1)(y-1)
=
1
x-1
=
1/(y-1)
用a、b来代替x-1和y-1,即a
=
1/b
于是a+b
=
b+1/b
>=
2,a+b的最小值是2
所以x+y
=
a+b+2,最小值为4
两边同乘xy:x+y
=
xy
xy-x-y
=
0
xy-x-y+1
=
1
(x-1)(y-1)
=
1
x-1
=
1/(y-1)
用a、b来代替x-1和y-1,即a
=
1/b
于是a+b
=
b+1/b
>=
2,a+b的最小值是2
所以x+y
=
a+b+2,最小值为4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询