用换元法解∫dx/x√1+x∧2

 我来答
戈星析听露
2020-05-13 · TA获得超过1085个赞
知道小有建树答主
回答量:1759
采纳率:100%
帮助的人:7.9万
展开全部
令x=tanu,则dx=sec²t dt
∫1/[x√(1+x²)] dx
=∫1/[tanu·√(1+tan²x)]·sec²t dt
=∫cscu du
=-ln|cscu+cotu|+C 【或者=ln|cscu-cotu|+C】
=-ln|[√(1+x²)+1]/x|+C 【=ln|[√(1+x²)-1]/x|+C】
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式