已知△ABC的内角A、B、C的对边分别为a、b、c,向量m=(sinB,1-cosB)与向量n=(2,0)的夹角为π3,求a+

已知△ABC的内角A、B、C的对边分别为a、b、c,向量m=(sinB,1-cosB)与向量n=(2,0)的夹角为π3,求a+cb的最大值.... 已知△ABC的内角A、B、C的对边分别为a、b、c,向量m=(sinB,1-cosB)与向量n=(2,0)的夹角为π3,求a+cb的最大值. 展开
 我来答
扑倒银桑WS
推荐于2016-05-21 · TA获得超过174个赞
知道答主
回答量:125
采纳率:33%
帮助的人:54.8万
展开全部
m
 ?
n
=(sinB,1-cosB)?(2,0)=2sinB,|
m
|=
sin2B+ (1?cosB)2
=2sin
B
2

|
n
|=2,∴cos<
m
n
>=cos
π
3
=
m
?
n
|
m|
?|
n
|
=cos
B
2
,∴
B
2
=
π
3
,B=
3

∴A+C=
π
3
,sinB=
3
2

由正弦定理得
a+c
b
= 
sinA+sinC
sinB
=
2
3
3
(sinA+sinC)=
2
3
3
(sinA+sin(
π
3
-A)
=
2
3
3
1
2
sinA+
3
2
cosA)=
2
3
3
sin(
π
3
+A).
∵0<A<
π
3
,∴
π
3
<A+
π
3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式