一个向量组不能由另一个向量组线性表示,则这两个向量组的秩大小关系是怎样的?
1个回答
展开全部
大小关系是随意的,既有可能是第一个大于第二个,也有可能是第二个大于第一个,还有可能是第一个等于第二个。
秩可以看作向量组在空间上的维度,或者说向量组组成的空间的维度。在三维空间中,R(B)=3(B占据了整个三维空间),如果R(A)<R(B),那么A空间的维度小于B空间。那么B空间一定能包含A空间,也就是说B足以涵盖A。
但当R(A)=R(B)时,则B不一定涵盖A。例如在三维空间中,两个不平行的二维平面无法相互涵盖。所以,R(A)<=R(B),并不是A可由B表示的充分必要条件。
一、区别
(一)含义不同
1、向量组是由若干同维数的列向量(或同维数的行向量)组成的集合。
2、矩阵是一个按照长方阵列排列的复数或实数集合,由向量组构成。
(二)特点不同
1、向量组是有限个相同维数的行向量或者列向量,其中向量是由n个实数组成的有序数组,是一个n*1的矩阵(n维列向量)或是一个1*n的矩阵(n维行向量)。
2、矩阵是由m*n个数排列成m行n列的数表。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |