已知函数f(x)=ax-ex(a>0).(Ⅰ)当a=12时,求函数f(x)的单调区间;(Ⅱ)当1≤a≤1+e时,求证:
已知函数f(x)=ax-ex(a>0).(Ⅰ)当a=12时,求函数f(x)的单调区间;(Ⅱ)当1≤a≤1+e时,求证:f(x)≤x....
已知函数f(x)=ax-ex(a>0).(Ⅰ)当a=12时,求函数f(x)的单调区间;(Ⅱ)当1≤a≤1+e时,求证:f(x)≤x.
展开
展开全部
解答:(Ⅰ)解:当a=
时,f(x)=
x?ex,令f′(x)=
-ex=0,x=-ln2
当x<-ln2时,f′(x)>0;当x>-ln2时,f′(x)<0,
∴函数f(x)的单调递增区间为(-∞,-ln2),递减区间为(-ln2,+∞).
(Ⅱ)证明:令F(x)=x-f(x)=ex-(a-1)x,
(1)当a=1时,F(x)=ex>0,∴f(x)≤x成立;
(2)当1<a≤1+e时,F′(x)=ex-(a-1)=ex-eln(a-1),
当x<ln(a-1)时,F′(x)<0;当x>ln(a-1)时,F′(x)>0,
∴F(x)在(-∞,ln(a-1))上递减,在(ln(a-1),+∞)上递增,
∴F(x)≥F(ln(a-1))=eln(a-1)-(a-1)ln(a-1)=(a-1)[1-ln(a-1)],
∵1<a≤1+e,∴a-1>0,1-ln(a-1)≥1-ln[(1+e)-1]=0,
∴F(x)≥0,即f(x)≤x成立.
综上,当1≤a≤1+e时,有f(x)≤x.
1 |
2 |
1 |
2 |
1 |
2 |
当x<-ln2时,f′(x)>0;当x>-ln2时,f′(x)<0,
∴函数f(x)的单调递增区间为(-∞,-ln2),递减区间为(-ln2,+∞).
(Ⅱ)证明:令F(x)=x-f(x)=ex-(a-1)x,
(1)当a=1时,F(x)=ex>0,∴f(x)≤x成立;
(2)当1<a≤1+e时,F′(x)=ex-(a-1)=ex-eln(a-1),
当x<ln(a-1)时,F′(x)<0;当x>ln(a-1)时,F′(x)>0,
∴F(x)在(-∞,ln(a-1))上递减,在(ln(a-1),+∞)上递增,
∴F(x)≥F(ln(a-1))=eln(a-1)-(a-1)ln(a-1)=(a-1)[1-ln(a-1)],
∵1<a≤1+e,∴a-1>0,1-ln(a-1)≥1-ln[(1+e)-1]=0,
∴F(x)≥0,即f(x)≤x成立.
综上,当1≤a≤1+e时,有f(x)≤x.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询