设a,b,c是实数,a+b+c=2√a+1+4√b+1+6√c-2-14,求a(b+c)+b(c+
设a,b,c是实数,a+b+c=2√a+1+4√b+1+6√c-2-14,求a(b+c)+b(c+a)+c(a+b)的值...
设a,b,c是实数,a+b+c=2√a+1+4√b+1+6√c-2-14,求a(b+c)+b(c+a)+c(a+b)的值
展开
1个回答
展开全部
这题要把a看成是√a的平方,b是√b的平方,c是√c的平方,再利用完全平方公式。原式经过移项变成a-2√a+1+b-4√b+4+c-6√c+9=0,不难看出式子左边可以合并成三个完全平方形式,即(√a-1)^2+(√b-2)^2+(√c-3)^2=0,由于一个数的平方不小于零,要让这个式子成立,只有三个括号里的数均为零。因此a=1,b=4,c=9 将这些值代入a(b+c)+b(c+a)+c(a+b)中,答案是98。
更多追问追答
追问
^是什么
追答
^2代表平方
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询