取一张矩形的纸进行折叠,具体操作过程如下:第一步:先把矩形ABCD对折,折痕为MN,如图(1)所示;第二

取一张矩形的纸进行折叠,具体操作过程如下:第一步:先把矩形ABCD对折,折痕为MN,如图(1)所示;第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B... 取一张矩形的纸进行折叠,具体操作过程如下:第一步:先把矩形ABCD对折,折痕为MN,如图(1)所示;第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B′,得 Rt△AB′E,如图(2)所示;第三步:沿EB′线折叠得折痕EF,如图(3)所示;利用展开图(4)所示.探究:(1)△AEF是什么三角形?证明你的结论.(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.(3)如图(5),将矩形纸片ABCD沿EF折叠,使点A落在DC边上的点A′处,x轴垂直平分DA,直线EF的表达式为y=kx-k (k<0)①问:EF与抛物线y=?18x2 有几个公共点?②当EF与抛物线只有一个公共点时,设A′(x,y),求xy 的值. 展开
 我来答
鄁儿
推荐于2016-04-20 · 超过69用户采纳过TA的回答
知道答主
回答量:130
采纳率:0%
帮助的人:127万
展开全部
解:(1)△AEF是等边三角形
证明:∵PE=PA,
B′P是RT△AB′E 斜边上的中线
∴PA=B′P,
∴∠EAB′=∠PB′A,
又∵PN∥AD,
∴∠B′AD=∠PB′A,
又∵2∠EAB′+∠B′AD=90°,
∴∠EAB′=∠B′AD=30°,
易证∠AEF=60°,∴∠EAF=60°,
∴△AEF是等边三角形;

(2)不一定,
设矩形的长为a,宽为b,可知b≤
3
2
a
 时,一定能折出等边三角形,
3
2
a
<b<a 时,不能折出;

(3)①由
y=kx?k
y=?
1
8
x2

得 x2+8kx-8k=0,△=(8k)2+32k=32k(2k+1),
∵k<0.
∴k<-
1
2
时,△>0,EF与抛物线有两个公共点.
k=?
1
2
,△=0
时,EF与抛物线有一个公共点.
k>?
1
2
,△<0
时,EF与抛物线没有公共点,
②EF与抛物线只有一个公共点时,k=?
1
2

EF的表达式为y=?
1
2
x+
1
2

EF与x轴、y轴的交点为M(1,0),E(0,
1
2
),
∵∠EMO=90°-∠OEM=∠EAA′,
∴RT△EMO∽RT△A′AD,
OE
OM
DA/
DA

1
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消