(2013?河池)如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、C

(2013?河池)如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.(1)求证:△A... (2013?河池)如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.(1)求证:△ABD≌△FBC;(2)如图(2),已知AD=6,求四边形AFDC的面积;(3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c2≠a2+b2.在任意△ABC中,c2=a2+b2+k.就a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可). 展开
 我来答
长年艺相相侯门3936
推荐于2016-08-10 · TA获得超过153个赞
知道答主
回答量:109
采纳率:100%
帮助的人:54.7万
展开全部
解:(1)∵四边形ABFG、BCED是正方形,
∴AB=FB,CB=DB,∠ABF=∠CBD=90°,
∴∠ABF+∠ABC=∠CBD+∠ABC,
即∠ABD=∠CBF,
在△ABD和△FBC中,
AB=FB
∠ABD=∠CBF
DB=CB

∴△ABD≌△FBC(SAS);

(2)连接FD,设CF与AB交于点N,
∵△ABD≌△FBC,
∴AD=FC,∠BAD=∠BFC,
∴∠AMF=180°-∠BAD-∠CNA=180°-(∠BFC+∠BNF)=180°-90°=90°,
∴AD⊥CF,
∵AD=6,
∴FC=AD=6,
∴S四边形AFDC=S△ACD+S△ACF+S△DMF-S△ACM
=
1
2
AD?CM+
1
2
CF?AM+
1
2
DM?FM-
1
2
AM?CM,
=3CM+3AM+
1
2
(6-AM)(6-CM)-
1
2
AM?CM,
=18;

(3)∵在△ABC中,设BC=a=3,AC=b=2,AB=c,
∴a-b<c<a+b,即1<c<5,
∴1<c2<25,即1<a2+b2+k=13+k<25,
解得:-12<k<12.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式