用二重积分求立体的体积!
1个回答
展开全部
将左式代入右式得z=2a-根号(az)
解得z=a.(z=4a已舍去)
故所围立体在z=0上的投影为x^2+y^2=a^2
故体积为∫∫(2a-根号(x^2+y^2)-(x^2+y^2)/a)dxdy.
其中D为x^2+y^2=a^2
再作变换x=rcost,y=rsint解即可.
解得z=a.(z=4a已舍去)
故所围立体在z=0上的投影为x^2+y^2=a^2
故体积为∫∫(2a-根号(x^2+y^2)-(x^2+y^2)/a)dxdy.
其中D为x^2+y^2=a^2
再作变换x=rcost,y=rsint解即可.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询