设函数f(x)=In(1+x)-2x/(x+2),证明:当x>0时,f(x)>0
展开全部
f(x) = ln(1+x) - 2x/(x+2)
f'(x) = 1/(1+x) - 2 [(x+2)-x]/(x+2)^2
= 1/(1+x) - 4/(x+2)^2
= [(x+2)^2 - 4(1+x)]/[(1+x)(x+2)^2]
= x^2/[(1+x)(x+2)^2] > 0 ( for x >0)
f(0) = 0
f(x)> f(0) = 0
ie f(x) > 0
f'(x) = 1/(1+x) - 2 [(x+2)-x]/(x+2)^2
= 1/(1+x) - 4/(x+2)^2
= [(x+2)^2 - 4(1+x)]/[(1+x)(x+2)^2]
= x^2/[(1+x)(x+2)^2] > 0 ( for x >0)
f(0) = 0
f(x)> f(0) = 0
ie f(x) > 0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询