xe^(-x)积分0到正无穷是什么?

 我来答
社无小事
高能答主

2022-01-13 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20436

向TA提问 私信TA
展开全部

xe^(-x)积分0到正无穷是1。

这道题先求∫xe^xdx的不定积分,用分部积分:

∫xe^xdx

=∫xde^x

=xe^x-∫e^xdx

=xe^x-e^x+C

=(x-1)*e^x+C

所以原式=(1-1)*e^1-(0-1)*e^0

=0+1

=1

积分基本公式

1、∫0dx=c

2、∫x^udx=(x^u+1)/(u+1)+c

3、∫1/xdx=ln|x|+c

4、∫a^xdx=(a^x)/lna+c

5、∫e^xdx=e^x+c

6、∫sinxdx=-cosx+c

7、∫cosxdx=sinx+c

8、∫1/(cosx)^2dx=tanx+c

9、∫1/(sinx)^2dx=-cotx+c

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式