已知偶函数的两条对称轴,X=1和X=2,证明它是周期函数
1个回答
展开全部
f(x)关于x=1对称,则f(x)=f(-x+2)
f(x)关于x=2对称,则f(x)=f(-x+4)=f[-(-x+2)+4]=f(x+2)
所以,f(x)是以2位周期的周期函数
补充,函数关于x=a对称,就是f(a+x)=f(a-x),或f(x)=f(2a-x)
f(x)关于x=2对称,则f(x)=f(-x+4)=f[-(-x+2)+4]=f(x+2)
所以,f(x)是以2位周期的周期函数
补充,函数关于x=a对称,就是f(a+x)=f(a-x),或f(x)=f(2a-x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询