已知等差数列{an}中,a2+a8=26,且a3=7 1求数列{an}的通向公式 2设bn=1/a
已知等差数列{an}中,a2+a8=26,且a3=71求数列{an}的通向公式2设bn=1/anan+1,求数列{bn}的前n项和Sn...
已知等差数列{an}中,a2+a8=26,且a3=7
1求数列{an}的通向公式
2设bn=1/anan+1,求数列{bn}的前n项和Sn 展开
1求数列{an}的通向公式
2设bn=1/anan+1,求数列{bn}的前n项和Sn 展开
1个回答
展开全部
(1)
an = a1+(n-1)d
a2+a8=26
2a1+8d=26
a1+4d =13 (1)
a3=7
a1+2d = 7 (2)
(1)-(2)
d = 3
from (1) =>a1=1
an = 1+3(n-1) = 3n -2
(2)
bn=1/(an.a(n+1)),求数列{bn}的前n项和Sn
bn=1/(an.a(n+1))
= 1/[(3n-2)(3n+1)]
=(1/3) [ 1/(3n-2)-1/(3n+1) ]
Sn =b1+b2+...+bn
=(1/3) [ 1 -1/(3n+1) ]
=n/(3n+1)
an = a1+(n-1)d
a2+a8=26
2a1+8d=26
a1+4d =13 (1)
a3=7
a1+2d = 7 (2)
(1)-(2)
d = 3
from (1) =>a1=1
an = 1+3(n-1) = 3n -2
(2)
bn=1/(an.a(n+1)),求数列{bn}的前n项和Sn
bn=1/(an.a(n+1))
= 1/[(3n-2)(3n+1)]
=(1/3) [ 1/(3n-2)-1/(3n+1) ]
Sn =b1+b2+...+bn
=(1/3) [ 1 -1/(3n+1) ]
=n/(3n+1)
更多追问追答
追问
真的?
追答
应该没错!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询