跪求矩阵行列式定理:|AB|=|A||B|
2个回答
展开全部
A=PEP-1,B=QEQ-1,所以AB= PEP-1QEQ-1,后面应该就显然可得了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用分块矩阵的方法来证明:
| A 0|
|-E B|=[按前n行展开]=|A||B| ① (E为单位矩阵)
注意第三类分块行初等变换不改变行列式的值,第二块行左乘A加到第一块行,
| A 0|
|-E B|=
| 0 AB|
|-E B|=[按前n行展开]=(-1)^t|AB||-E|②
t=1+2+……+n+(n+1)+(n+2)+……+(n+n)=n(2n+1)
|-E|=(-1)^n,注意n(2n+1)+n=2(n²+n)是偶数.
∴(-1)^t|AB||-E|=|AB|③
对照①②③,得到:|A||B|=|AB|
| A 0|
|-E B|=[按前n行展开]=|A||B| ① (E为单位矩阵)
注意第三类分块行初等变换不改变行列式的值,第二块行左乘A加到第一块行,
| A 0|
|-E B|=
| 0 AB|
|-E B|=[按前n行展开]=(-1)^t|AB||-E|②
t=1+2+……+n+(n+1)+(n+2)+……+(n+n)=n(2n+1)
|-E|=(-1)^n,注意n(2n+1)+n=2(n²+n)是偶数.
∴(-1)^t|AB||-E|=|AB|③
对照①②③,得到:|A||B|=|AB|
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询