已知抛物线y=-x2+mx+(7-2m)(m为常数).(1)证明:不论m为何值,抛物线与x轴恒有两个不同的交点;(2

 我来答
靳昕昕回慨
2019-07-03 · TA获得超过3万个赞
知道小有建树答主
回答量:1.1万
采纳率:27%
帮助的人:683万
展开全部
解答:(1)证明:∵△=m2-4×(-1)(7-2m)
=m2-8m+28
=(m-4)2+12>0,

抛物线
与x轴恒有两个不同的交点;
(2)解:由AB=4得|x2-x1|=4,
∴(x2-x1)2=16,
即(x2+x1)2-4x1x2=16,
由根与系数关系得(-m)2-4?(
7?2m
?1
)=16,
即m2-8m+12=0
解得m=2或m=6,
∵抛物线交y轴的正半轴于C
∴7-2m>0,
∴m<
7
2

∴m=6舍去,
即m=2,
∴抛物线的
解析式
为y=-x2+2x+3.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式