1个回答
展开全部
令F(x)=f(sinx)-f(cosx)
因为
F(-π/4)=f(sin(-π/4))-f(cos(-π/4))
=f(-√2/2)-f(√2/2)
f(x)为偶函数,则f(-x)=f(x)
则F(-π/4)=f(√2/2)-f(√2/2)=0
而F(π/4)=f(√2/2)-f(√2/2)=0
则可知F(-π/4)=F(π/4),同时
显然F(x)在[-π/4,π/4]上连续,
在(-π/4,π/4)上可导,由罗尔定理可知必定存在ξ∈(-π/4,π/4)上,
F'(ξ)=0
即:f'(sinξ)cosξ+f'(cosξ)'sinξ=0
因为
F(-π/4)=f(sin(-π/4))-f(cos(-π/4))
=f(-√2/2)-f(√2/2)
f(x)为偶函数,则f(-x)=f(x)
则F(-π/4)=f(√2/2)-f(√2/2)=0
而F(π/4)=f(√2/2)-f(√2/2)=0
则可知F(-π/4)=F(π/4),同时
显然F(x)在[-π/4,π/4]上连续,
在(-π/4,π/4)上可导,由罗尔定理可知必定存在ξ∈(-π/4,π/4)上,
F'(ξ)=0
即:f'(sinξ)cosξ+f'(cosξ)'sinξ=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询