f(x)=f(2x)且f(x)在x=0处连续,证明f(x)是常值函数
1个回答
展开全部
f(x)=f(2x), 所以f(x)=f(2x)=f(4x)=...=f((2^n)x),
如果令y=(2^n)x,则有x=y/(2^n),
则有f(y)=f(y/(2^n))
因为f(x)在x=0处连续,所以limf(x)=f(0)(x→0)
对于任意的y0有f(y0)=f(y0/(2^n)),且n是任意的正整数
所以f(y0)=f(y0/(2^n))=limf(y0/(2^n))(n→+∞)=f(0)
即f(x)=f(0), 结论得证.
如果令y=(2^n)x,则有x=y/(2^n),
则有f(y)=f(y/(2^n))
因为f(x)在x=0处连续,所以limf(x)=f(0)(x→0)
对于任意的y0有f(y0)=f(y0/(2^n)),且n是任意的正整数
所以f(y0)=f(y0/(2^n))=limf(y0/(2^n))(n→+∞)=f(0)
即f(x)=f(0), 结论得证.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询