1个回答
展开全部
该方程为Trigonometric identity,可以用Double Angle Identity解决。
将x代入双角公式cos 2θ = 2cos^2 θ - 1:
cos 2x = 2cos^2 x - 1
将cos 2x代入给定方程:
cos (2x + π/3) = 2cos^2 x - 1
由已知sin (x - π/6) + cos x = 3/5,可得:
cos x = (3/5 - sin (x - π/6))
并将cos x代入双角公式:
cos (2x + π/3) = 2((3/5 - sin (x - π/6))^2 - 1
因此:
cos (2x + π/3) = 2((3/5 - sin (x - π/6))^2 - 1)
将x代入双角公式cos 2θ = 2cos^2 θ - 1:
cos 2x = 2cos^2 x - 1
将cos 2x代入给定方程:
cos (2x + π/3) = 2cos^2 x - 1
由已知sin (x - π/6) + cos x = 3/5,可得:
cos x = (3/5 - sin (x - π/6))
并将cos x代入双角公式:
cos (2x + π/3) = 2((3/5 - sin (x - π/6))^2 - 1
因此:
cos (2x + π/3) = 2((3/5 - sin (x - π/6))^2 - 1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询