如图,已知:△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE,G是垂足. 求证:(1)G是CE的中点;(2)∠B=2

如图,已知:△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE,G是垂足.求证:(1)G是CE的中点;(2)∠B=2∠BCE.... 如图,已知:△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE,G是垂足. 求证:(1)G是CE的中点;(2)∠B=2∠BCE. 展开
 我来答
手机用户89365
推荐于2016-12-01 · 超过67用户采纳过TA的回答
知道答主
回答量:128
采纳率:0%
帮助的人:131万
展开全部
证明:(1)连接DE;∵AD⊥BC,E是AB的中点,
∴DE是Rt△ABD斜边上的中线,
即DE=BE= AB;
∴DC=DE=BE;
又∵DG=DG,
∴Rt△EDG≌Rt△CDG;(HL)
∴GE=CG,
∴G是CE的中点.
(2)由(1)知:BE=DE=CD;
∴∠B=∠BDE,∠DEC=∠DCE;
∴∠B=∠BDE=2∠BCE.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式