如图,矩形ABCD中,AB=3,BC=4,点E,F,G,H分别在AB、BC、CD、AD上,若∠1=∠2=∠3=∠4,则四边形EFGH
如图,矩形ABCD中,AB=3,BC=4,点E,F,G,H分别在AB、BC、CD、AD上,若∠1=∠2=∠3=∠4,则四边形EFGH的周长是()A.5B.7C.10D.1...
如图,矩形ABCD中,AB=3,BC=4,点E,F,G,H分别在AB、BC、CD、AD上,若∠1=∠2=∠3=∠4,则四边形EFGH的周长是( )A.5B.7C.10D.14
展开
展开全部
∵∠1=∠2=∠3=∠4,
∴∠HEF=180°-∠3-∠4,∠FGH=180°-∠1-∠2,
∴∠HEF=∠FGH,
又∵∠EFG=180°-(90°-∠4)-(90°-∠2)=∠2+∠4,
∠EHG=180°-(90°-∠3)-(90°-∠1)=∠1+∠2,
∴∠EFG=∠EHG,
∴四边形EFGH是平行四边形,
易得△BEF≌△DGH,△AEH≌△CGF,
∴HD=BF,BE=DG,
∵∠3=∠4,∠A=∠B=90°,
∴△AEH∽△BEF,
∴
=
,
即
=
,
整理得,
=
,
设AE、AH分别为3k、4k,在Rt△AEH中,EH=
=
=5k,
在Rt△BEF中,EF=
=
=5(1-k),
∴EF+EH=5(1-k)+5k=5,
四边形EFGH的周长=2(EF+EH)=2×5=10.
故选C.
∴∠HEF=180°-∠3-∠4,∠FGH=180°-∠1-∠2,
∴∠HEF=∠FGH,
又∵∠EFG=180°-(90°-∠4)-(90°-∠2)=∠2+∠4,
∠EHG=180°-(90°-∠3)-(90°-∠1)=∠1+∠2,
∴∠EFG=∠EHG,
∴四边形EFGH是平行四边形,
易得△BEF≌△DGH,△AEH≌△CGF,
∴HD=BF,BE=DG,
∵∠3=∠4,∠A=∠B=90°,
∴△AEH∽△BEF,
∴
AE |
BE |
AH |
BF |
即
AE |
3?AE |
AH |
4?AH |
整理得,
AE |
AH |
3 |
4 |
设AE、AH分别为3k、4k,在Rt△AEH中,EH=
AE2+AH2 |
(3k)2+(4k)2 |
在Rt△BEF中,EF=
BE2+BF2 |
(3?3k)2+(4?4k)2 |
∴EF+EH=5(1-k)+5k=5,
四边形EFGH的周长=2(EF+EH)=2×5=10.
故选C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询