展开全部
(1)
S1 = a1 = 1/3(a1-1),则可以求出 a1 = -1/2
S2 = a1 + a2 = -1/2 + a2 = 1/3(a2 - 1),则可以求出 a2 = 1/4
(2)
Sn = 1/3(an-1),则
an = 3Sn + 1
a(n-1) = 3S(n-1) + 1
an/a(n-1) = (3Sn + 1)/[3S(n-1) + 1] = [3S(n-1) + 1+3an]/[3S(n-1) + 1]
= 3an/[3S(n-1) + 1] + 1 = 3an/a(n-1) +1
所以,2an/a(n-1) = -1
an/a(n-1) = -1/2
因此an是等比数列
S1 = a1 = 1/3(a1-1),则可以求出 a1 = -1/2
S2 = a1 + a2 = -1/2 + a2 = 1/3(a2 - 1),则可以求出 a2 = 1/4
(2)
Sn = 1/3(an-1),则
an = 3Sn + 1
a(n-1) = 3S(n-1) + 1
an/a(n-1) = (3Sn + 1)/[3S(n-1) + 1] = [3S(n-1) + 1+3an]/[3S(n-1) + 1]
= 3an/[3S(n-1) + 1] + 1 = 3an/a(n-1) +1
所以,2an/a(n-1) = -1
an/a(n-1) = -1/2
因此an是等比数列
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)
a1=S1=1/3(a1-1)
a1=-1/2
a2=S2-S1=1/3(a2-1)+1/2
3a2=a2-1+3/2
2a2=1/2
a2=1/4
2)
3Sn=an-1
3S(n-1)=a(n-1)-1
相减:
3an=an-a(n-1)
2an=-a(n-1)
an/a(n-1)=-1/2
所以{an}为等比数列!
a1=S1=1/3(a1-1)
a1=-1/2
a2=S2-S1=1/3(a2-1)+1/2
3a2=a2-1+3/2
2a2=1/2
a2=1/4
2)
3Sn=an-1
3S(n-1)=a(n-1)-1
相减:
3an=an-a(n-1)
2an=-a(n-1)
an/a(n-1)=-1/2
所以{an}为等比数列!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询