是否存在常数a,b,c使等式1*2^2+2*3^2+3*4^2+……+n*(n+1)^2

是否存在常数a,b,c使等式1*2^2+2*3^2+3*4^2+……+n*(n+1)^2=[n(n+1)/12](3n^2+11n+10)对一切自然数N都成立?并证明你的... 是否存在常数a,b,c使等式1*2^2+2*3^2+3*4^2+……+n*(n+1)^2=[n(n+1)/12](3n^2+11n+10)对一切自然数N都成立?并证明你的结论
证明:
假设存在a,b,c使得等式成立,则可以令n=1,2,3,此时得方程组:
①a+b+c=24;②4a+2b+c=44;③9a+3b+c=70
联立①②③,解得:a=3;b=11;c=10
即1*2^2+2*3^2+3*4^2+……+n*(n+1)^2=[n(n+1)/12](an^2+bn+c)
下面用数学归纳法进行证明:
1.当n=1时,成立(通过前面的计算是成立的)
2.假设当n=k时,等式成立,
即Sk=1*2^2+2*3^2+3*4^2+……+k*(k+1)^2=[k(k+1)/12](3k^2+11k+10)
则当n=k+1时,
Sk+1
=Sk+(k+1)(k+2)
=[k(k+1)/12](3k^2+11k+10)+(k+1)(k+2)
=[(k+1)(k+2)/12][3(k+1)^2+11(k+1)+10]
即当n=k+1时,等式也成立
因此,当a=3,b=11,c=10 时,等式对一切自然数都成立。
展开
 我来答
就爱笑123
2008-10-12 · TA获得超过4145个赞
知道答主
回答量:344
采纳率:0%
帮助的人:174万
展开全部
0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友c05875f
2008-10-13 · TA获得超过1056个赞
知道答主
回答量:89
采纳率:0%
帮助的人:133万
展开全部
o b
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
x139303
2013-06-09
知道答主
回答量:24
采纳率:0%
帮助的人:17.9万
展开全部
这不是明显错了吗?倒数第5行的平方呢?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式