在三角形ABC中,角A,B,C的对边分别为abc,且A,B,C,成等差数列

 我来答
尾梓维夔黛
2019-01-30 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.3万
采纳率:31%
帮助的人:843万
展开全部
由ABC成等差数列,则有2B=A+C,又A+B+C=π,所以,B=π/3
①由正弦定理得:a/sinA=b/sinB=c/sinC,所以,sinA=asinB/b=3×(√3/2)/√13=3√39/26
由于,a=3<b=√13,所以A<B=π/3,则,cosA=√(1-sin²A)=5√13/26
sinC=sin(π-A-B)=sin(A+B)=sinAcosB+cosAsinB
=(3√39/26)×(1/2)+5√13/26×(√3/2)
=7√39/52
所以,c=bsinC/sinB=√13×(7√39/52)/(√3/2)=7/2
②t=sinAsinC
=sin(π-B-C)sinC=sin(2π/3-C)sinC
=(sin2π/3×cosC-cos2π/3×sinC)sinC
=(√3/2)sinCcosC-(1/2)sin²C
=(√3/4)sin2C-(1/4)(1-cos2C)
=(√3/4)sin2C+(1/4)cos2C-1/4
=(1/8)sin(2C+π/6)-1/4
由于,0<C<2π/3,所以,π/6<2C+π/6<3π/2
所以当sin(2C+π/6)=sin(π/2)=1时,t取得最大值
即t=1/8-1/4=-1/8
如有不懂请追问
望采纳
错素琴伏胭
2019-09-19 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.3万
采纳率:34%
帮助的人:908万
展开全部
解:(1)acosc,bcosb,ccosa成等差数列,得:acosc+ccosa=2bcosb
先使用正弦定理对原式进行变形:a=2rsina,b=2rsinb,c=2rsinc(r为三角形外接圆半径)
代入有:2rsinacosc+2rsinccosa=2*2rsinbcosb
化简得:sinacosc+sinccosa=2sinbcosb
即:sin(a+c)=sin2b=sin(π-b)=sinb
又因为a,b,c是三角形内角,故有:
2b=π-b,解得b=π/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式