在△ABC中,三边a,b,c与面积s满足s=a^2-(b-c)^2,求△ABC面积的最大值

 我来答
新科技17
2022-08-09 · TA获得超过5873个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:73.5万
展开全部
已知三角形ABC的三边长a`b`c和面积S=a^2-(b-c)^2,且b+c=8,求S的最大值?
S=(1/2)bcsinA
a^2=b^2+c^2-2bccosA
所以 (1/2)bcsinA=b^2+c^2-2bccosA-b^2-c^2+2bc
(1/2)sinA=2-2cosA
cosA=1(舍去) 或者 cosA=15/17
所以 sinA=8/17
S=(1/2)bcsinA
=(4/17)b(8-b)
=(-4/17)(b^2-8b+16-16)
=(-4/17)(b-4)^2+64/17
当b=c=4时,S有最大值64/17
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式