非其次线性方程组求通解 100
3个回答
展开全部
非齐次线性方程组解法:非齐次线性方程组Ax=b的求解步骤:(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。(2)若R(A)=R(B),则进一步将B化为行最简形。(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于C1,C2……,Cn-r,即可写出含n-r个参数的通解。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
式 (2) - 4(1) + (3) 得 0 = -1 矛盾, 方程组无解。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询