如图,已知△ABC,AC=BC=6,∠C=90°,O是AB的中点,⊙O与AC相切于点D,与BC相切于点E,设⊙O交OB于F,连

如图,已知△ABC,AC=BC=6,∠C=90°,O是AB的中点,⊙O与AC相切于点D,与BC相切于点E,设⊙O交OB于F,连DF并延长交CB的延长线于G.(1)求∠AD... 如图,已知△ABC,AC=BC=6,∠C=90°,O是AB的中点,⊙O与AC相切于点D,与BC相切于点E,设⊙O交OB于F,连DF并延长交CB的延长线于G.(1)求∠ADG的度数;(2)求由DG、GE和ED所围成图形的面积(阴影部分) 展开
 我来答
七颜TA0446
推荐于2016-08-29 · 超过59用户采纳过TA的回答
知道答主
回答量:107
采纳率:100%
帮助的人:113万
展开全部
(1)连接OD.
∵CD切⊙O于点D,
∴∠ODA=90°,∠DOA=45°,
∵OD=OF,
∴∠ODF=∠OFD=
1
2
∠DOA=22.5°,
∴∠CDG=∠CDO-∠ODF=90°-22.5°=67.5°,
∴∠ADG=180°-∠CDG=112.5°;
(2)连OE,
∵⊙O与AC相切于点D、与BC相切于点E,
∴DC=CE,OD⊥AC,OE⊥BC,
∵∠C=90°,
∴四边形ODCE为正方形,
∵AO=BO=
1
2
AB=
1
2
AC2+BC2
=3
2

∴OD=
1
2
BC=
1
2
×6=3,
∵∠BFG=∠BGF,
∴BG=BF=OB-OF=3
2
-3;
从而CG=CB+BG=3+3
2

∴S阴影=S△DCG-S正方形ODCE+S扇形ODE
=S△DCG-(S正方形ODCE-S扇形ODE
=
1
2
×3×(3+3
2
)-(32-
1
4
π?32
=
4
+
9
2
2
-
9
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式