如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠

如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③... 如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④CDBD=1.其中正确的是(  )A.①②③B.①②④C.①③④D.①②③④ 展开
 我来答
阿瑟4192
推荐于2017-10-02 · TA获得超过141个赞
知道答主
回答量:191
采纳率:0%
帮助的人:133万
展开全部
解:①∵∠CAD=30°,AC=BC=AD,∴∠ACD=∠ADC=
1
2
(180°-30°)=75°,
∵CE⊥CD,∴∠DCE=90°,
∴∠ECA=165°∴①正确;
②∵CE⊥CD,∠ECA=165°(已证),
∴∠BCE=∠ECA-∠ACB=165-90=75°,
∴△ACD≌△BCE(SAS),
∴BE=BC,∴②正确;
③∵∠ACB=90°,∠CAD=30°,AC=BC,
∴∠CAB=∠ABC=45°
∴∠BAD=∠BAC-∠CAD=45-30=15°,
∵△ACD≌△BCE,
∴∠CBE=30°,
∴∠ABF=45+30=75°,
∴∠AFB=180-15-75=90°,
∴AD⊥BE.
④证明:如图,
过D作DM⊥AC于M,过D作DN⊥BC于N.
∵∠CAD=30°,且DM=
1
2
AC,
∵AC=AD,∠CAD=30°,∴∠ACD=75°,
∴∠NCD=90°-∠ACD=15°,∠MDC=∠DMC-∠ACD=15°,
在△CMD和△CND中,
∠CMD=∠CND
∠MDC=∠NCD
CD=CD

∴△CMD≌△CND,
∴CN=DM=
1
2
AC=
1
2
BC,
∴CN=BN.
∵DN⊥BC,
∴BD=CD.∴④正确.
所以4个结论都正确.
故选D.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式