如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(﹣1,0),以AB的中点P为圆心,
如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(﹣1,0),以AB的中点P为圆心,AB为直径作⊙P的正半轴交于点C.(1)求经过A、B、C三点的...
如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(﹣1,0),以AB的中点P为圆心,AB为直径作⊙P的正半轴交于点C. (1)求经过A、B、C三点的抛物线所对应的函数解析式;(2)设M为(1)中抛物线的顶点,求直线MC对应的函数解析式;(3)试说明直线MC与⊙P的位置关系,并证明你的结论.
展开
孤独患者丶沣t
推荐于2017-09-05
·
TA获得超过226个赞
关注
(1) ![](https://iknow-pic.cdn.bcebos.com/0b7b02087bf40ad1fd097051542c11dfa8ecce97?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) (2) ![](https://iknow-pic.cdn.bcebos.com/622762d0f703918f08fb8b78523d269759eec45e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) (3)MC与⊙P的位置关系是相切 |
解:(1)∵A(4,0),B(-1,0), ∴AB=5,半径是PC=PB=PA= ![](https://iknow-pic.cdn.bcebos.com/5bafa40f4bfbfbedc67380cd7bf0f736afc31f5d?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 。∴OP= ![](https://iknow-pic.cdn.bcebos.com/f703738da977391230cb32d3fb198618377ae297?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 。 在△CPO中,由勾股定理得: ![](https://iknow-pic.cdn.bcebos.com/cefc1e178a82b90137877581708da9773912ef5e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 。∴C(0,2)。 设经过A、B、C三点抛物线解析式是 ![](https://iknow-pic.cdn.bcebos.com/242dd42a2834349bccebd937caea15ce37d3be97?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) , 把C(0,2)代入得: ![](https://iknow-pic.cdn.bcebos.com/a8773912b31bb0517c0e059a357adab44aede05e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,∴ ![](https://iknow-pic.cdn.bcebos.com/3812b31bb051f819030fb5f8d9b44aed2e73e75e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 。 ∴ ![](https://iknow-pic.cdn.bcebos.com/e824b899a9014c08f7d69f17097b02087af4f497?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 。 ∴经过A、B、C三点抛物线解析式是 ![](https://iknow-pic.cdn.bcebos.com/0b7b02087bf40ad1fd097051542c11dfa8ecce97?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) , (2)∵ ![](https://iknow-pic.cdn.bcebos.com/e824b899a9014c08f6119e17097b02087bf4f45e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,∴M ![](https://iknow-pic.cdn.bcebos.com/bf096b63f6246b60ce2404c6e8f81a4c510fa25e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 。 设直线MC对应函数表达式是y=kx+b, 把C(0,2),M ![](https://iknow-pic.cdn.bcebos.com/bf096b63f6246b60ce2404c6e8f81a4c510fa25e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 代入得: ![](https://iknow-pic.cdn.bcebos.com/03087bf40ad162d96dc4d4ae12dfa9ec8a13cd5e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,解得 ![](https://iknow-pic.cdn.bcebos.com/f3d3572c11dfa9ec2904e0a561d0f703918fc15e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 。 ∴直线MC对应函数表达式是 ![](https://iknow-pic.cdn.bcebos.com/622762d0f703918f08fb8b78523d269759eec45e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 。 (3)MC与⊙P的位置关系是相切。证明如下: 设直线MC交x轴于D, 当y=0时, ![](https://iknow-pic.cdn.bcebos.com/4e4a20a4462309f727821aa0710e0cf3d6cad697?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,∴ ![](https://iknow-pic.cdn.bcebos.com/08f790529822720eb623554878cb0a46f31fab97?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,OD= ![](https://iknow-pic.cdn.bcebos.com/503d269759ee3d6dfbec317940166d224f4ade5e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 。∴D( ![](https://iknow-pic.cdn.bcebos.com/58ee3d6d55fbb2fbf301eea04c4a20a44623dc5e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,0)。 在△COD中,由勾股定理得: ![](https://iknow-pic.cdn.bcebos.com/3c6d55fbb2fb4316dc35ccc823a4462309f7d35e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) , 又 ![](https://iknow-pic.cdn.bcebos.com/42166d224f4a20a4f2348a7593529822720ed05e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) , ![](https://iknow-pic.cdn.bcebos.com/730e0cf3d7ca7bcbb651719dbd096b63f624a85e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) , ∴CD 2 +PC 2 =PD 2 。 ∴∠PCD=90 0 ,即PC⊥DC。 ∵PC为半径, ∴MC与⊙P的位置关系是相切。 (1)求出半径,根据勾股定理求出C的坐标,设经过A、B、C三点抛物线解析式是 ![](https://iknow-pic.cdn.bcebos.com/242dd42a2834349bccebd937caea15ce37d3be97?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,把C(0,2)代入求出a即可。 (2)求出M的坐标,设直线MC对应函数表达式是y=kx+b,把C(0,2),M ![](https://iknow-pic.cdn.bcebos.com/bf096b63f6246b60ce2404c6e8f81a4c510fa25e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 代入得到方程组,求出方程组的解即可。 (3)根据点的坐标和勾股定理分别求出PC、DC、PD的平方,根据勾股定理的逆定理得出∠PCD=90 0 ,即可作出判断。 |
收起
为你推荐: