D={(x,y)l x^2+y^2<=1,x>=0} 求二重积分 I=∫∫D(1+xy)/(1+x^2+y^2)dxdy 5
D={(x,y)lx^2+y^2<=1,x>=0}求二重积分I=∫∫D(1+xy)/(1+x^2+y^2)dxdy...
D={(x,y)l x^2+y^2<=1,x>=0}
求二重积分 I=∫∫D(1+xy)/(1+x^2+y^2)dxdy 展开
求二重积分 I=∫∫D(1+xy)/(1+x^2+y^2)dxdy 展开
2个回答
展开全部
I = ∫∫ (1 + xy)/(1 + x² + y²) dxdy,D = { (x,y) | x² + y² ≤ 1,x ≥ 0 }
{ x = rcosθ,{ y = rsinθ
I = ∫(- π/2→π/2) dθ ∫(0→1) (1 + r²sinθcosθ)/(1 + r²) • rdr
= ∫(- π/2→π/2) dθ • ∫(0→1) [r/(1 + r²) + r³/(1 + r²) • sinθcosθ] dr
= ∫(- π/2→π/2) (1/2)ln(r² + 1) + sinθcosθ • [r²/2 - (1/2)ln(r² + 1)] |(0→1) dθ
= ∫(- π/2→π/2) (1/2)ln(2) + [1/2 - (1/2)ln(2)] • sinθcosθ dθ
= (1/2)ln(2) • (π/2 + π/2) + [1/2 - (1/2)ln(2)] • 0
= (1/2)ln(2) • π
= (π/2)ln(2)
{ x = rcosθ,{ y = rsinθ
I = ∫(- π/2→π/2) dθ ∫(0→1) (1 + r²sinθcosθ)/(1 + r²) • rdr
= ∫(- π/2→π/2) dθ • ∫(0→1) [r/(1 + r²) + r³/(1 + r²) • sinθcosθ] dr
= ∫(- π/2→π/2) (1/2)ln(r² + 1) + sinθcosθ • [r²/2 - (1/2)ln(r² + 1)] |(0→1) dθ
= ∫(- π/2→π/2) (1/2)ln(2) + [1/2 - (1/2)ln(2)] • sinθcosθ dθ
= (1/2)ln(2) • (π/2 + π/2) + [1/2 - (1/2)ln(2)] • 0
= (1/2)ln(2) • π
= (π/2)ln(2)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询