什么情况下积分和求导可以交换顺序

 我来答
杨老师秒懂课堂
高能答主

2021-08-01 · 分享生活酸甜苦辣咸,喜怒哀乐。
杨老师秒懂课堂
采纳数:875 获赞数:110712

向TA提问 私信TA
展开全部

交换积分次序,无论什么情况下是可以的,但要具体情况进行分析。

1、多重积分,不同于一重积分,能不能积出来,取决于:

A、被积函数的形式,这在一重积分中,也是一样;

B、积分的区域,这在一重积分中,也会出现;

C、积分的次序,这是一重积分不具备的。

2、交换积分次序,在理论上说合理的,是可行的,但是,并不意味着积分能积出来。

A、合适的次序,三下五去二,就能解决;次序错了,原本能解出来的题,也变得不可解了。

B、无论怎样交换积分次序,都不可能积分积出来。

3、对于积分区域很复杂的情况,积分区间要分割。

部分区间内,要改变积分次序;部分内不需要改变;部分区域间内,可能无论怎样都积分不出来。

一般定理:

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

帐号已注销
2020-12-25 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

如果积分后面是的是正常的积分,那么可以随意交换只要导数存在的话。

如果是反常积分,那么需要积分后面的函数要一致收敛。

交换积分次序,在理论上说合理的,是可行的,但是,并不意味着积分能积出来。

A、合适的次序,三下五去二,就能解决;次序错了,原本能解出来的题,也变得不可解了。

B、无论怎样交换积分次序,都不可能积分积出来。

对于积分区域很复杂的情况,积分区间要分割,部分区间内,可能要改变积分次序;部分内可能不需要改变;部分区域间内,可能无论怎样都积分不出来。

扩展资料:

如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。

函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。

参考资料来源:百度百科-积分

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
伪临朝武氏者
2019-08-26 · TA获得超过203个赞
知道答主
回答量:33
采纳率:100%
帮助的人:1.7万
展开全部
你的意思是说,F(a)-F(b)=∫(a,b)F’(t)dt吗
结论是否定的,但是一般情况下,是可以交换求导和积分顺序的,更具体来说,在函数是绝对连续的情况下,可以交换次序。
我下面构造两个反例来表示不能交换次序的情况。第一类是冲击函数,形象点说是在原点附近不断波动的函数,如F(X)=X^2sin1/x^2,存在极限,但不是黎曼可积的,这个时侯不能变换顺序。
第二类是类似于狄利克雷函数的,勒尔曼可测,黎曼可积,但在有穷范围内积分为0,与一部分函数值不同,也不能交换次序
事实上这个问题吧,跟黎曼可积没什么关系,充要条件是绝对连续,emm如果提问者不是数学专业的,就记得初等函数都满足就ok了,那些构造出来的奇奇怪怪的函数不用管
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hubingdi1984
2017-05-05 · TA获得超过1.1万个赞
知道大有可为答主
回答量:9437
采纳率:86%
帮助的人:9262万
展开全部
如果积分后面是的是正常的积分,那么可以随意交换只要导数存在的话.
如果是反常积分,那么需要积分后面的函数要一致收敛.
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式