1个回答
展开全部
用错位相减法
a1=1*2^0
a2=2*2^1
a3=3*2^2
....
an=n*2^(n-1)
Sn=1*2^0+2*2^1+3*2^2+..............+n*2^(n-1)
2Sn= 1*2^1+2*2^2+3*2^3+....+(n-1)*2^(n-1)+n*2^n
上式-下式得
-Sn=【1+2^1+2^2+2^3+....+2^(n-1)】-n*2^n
括号内用等比数列求和公式得
-Sn=1*(1-2^n)/(1-2)-n*2^n
-Sn=2^n-1-n*2^n
∴Sn=n*2^n-2^n+1
Sn=(n-1)*2^n + 1
如果您认可我的回答,请及时点击右下角的【满意】按钮或点击“采纳为满意答案”,祝学习进步!
a1=1*2^0
a2=2*2^1
a3=3*2^2
....
an=n*2^(n-1)
Sn=1*2^0+2*2^1+3*2^2+..............+n*2^(n-1)
2Sn= 1*2^1+2*2^2+3*2^3+....+(n-1)*2^(n-1)+n*2^n
上式-下式得
-Sn=【1+2^1+2^2+2^3+....+2^(n-1)】-n*2^n
括号内用等比数列求和公式得
-Sn=1*(1-2^n)/(1-2)-n*2^n
-Sn=2^n-1-n*2^n
∴Sn=n*2^n-2^n+1
Sn=(n-1)*2^n + 1
如果您认可我的回答,请及时点击右下角的【满意】按钮或点击“采纳为满意答案”,祝学习进步!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询